(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
fac(s(x)) → *(fac(p(s(x))), s(x))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
p(s(s(x))) →+ s(p(s(x)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fac(s(x)) → *'(fac(p(s(x))), s(x))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
*'/1
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
fac(s(x)) → *'(fac(p(s(x))))
p(s(0')) → 0'
p(s(s(x))) → s(p(s(x)))
Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fac,
pThey will be analysed ascendingly in the following order:
p < fac
(10) Obligation:
TRS:
Rules:
fac(
s(
x)) →
*'(
fac(
p(
s(
x))))
p(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
p, fac
They will be analysed ascendingly in the following order:
p < fac
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
p(
gen_s:0'4_0(
+(
1,
n6_0))) →
gen_s:0'4_0(
n6_0), rt ∈ Ω(1 + n6
0)
Induction Base:
p(gen_s:0'4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
p(gen_s:0'4_0(+(1, +(n6_0, 1)))) →RΩ(1)
s(p(s(gen_s:0'4_0(n6_0)))) →IH
s(gen_s:0'4_0(c7_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
fac(
s(
x)) →
*'(
fac(
p(
s(
x))))
p(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
fac
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fac(
gen_s:0'4_0(
+(
1,
n213_0))) →
*5_0, rt ∈ Ω(n213
0 + n213
02)
Induction Base:
fac(gen_s:0'4_0(+(1, 0)))
Induction Step:
fac(gen_s:0'4_0(+(1, +(n213_0, 1)))) →RΩ(1)
*'(fac(p(s(gen_s:0'4_0(+(1, n213_0)))))) →LΩ(2 + n2130)
*'(fac(gen_s:0'4_0(+(1, n213_0)))) →IH
*'(*5_0)
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
fac(
s(
x)) →
*'(
fac(
p(
s(
x))))
p(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)
(18) BOUNDS(n^2, INF)
(19) Obligation:
TRS:
Rules:
fac(
s(
x)) →
*'(
fac(
p(
s(
x))))
p(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
fac(gen_s:0'4_0(+(1, n213_0))) → *5_0, rt ∈ Ω(n2130 + n21302)
(21) BOUNDS(n^2, INF)
(22) Obligation:
TRS:
Rules:
fac(
s(
x)) →
*'(
fac(
p(
s(
x))))
p(
s(
0')) →
0'p(
s(
s(
x))) →
s(
p(
s(
x)))
Types:
fac :: s:0' → *'
s :: s:0' → s:0'
*' :: *' → *'
p :: s:0' → s:0'
0' :: s:0'
hole_*'1_0 :: *'
hole_s:0'2_0 :: s:0'
gen_*'3_0 :: Nat → *'
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_*'3_0(0) ⇔ hole_*'1_0
gen_*'3_0(+(x, 1)) ⇔ *'(gen_*'3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_s:0'4_0(+(1, n6_0))) → gen_s:0'4_0(n6_0), rt ∈ Ω(1 + n60)
(24) BOUNDS(n^1, INF)